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Time-optimal Factorization Problem

G compact connected Lie group with Lie Algebra g

ω := {Ω+
1 , ..., Ω+

r , Ω−
1 , ..., Ω−

s } finite set of LA generators of g

Ω+
i : ”slow, cost expensive” directions

Ω−
i : ”fast, cheap” directions

Given X ∈ G, define

Tmin(X) = inf
{

∑

i

|t+i |
∣

∣ X =
∏

finite

et±
i

Ω±

i

}

Problem:

Is Tmin < ∞ always? Compute Tmin!

When does there exist a finite, time-optimal factorization?

Edinburgh ’04, Helmke – p.4/51



Example

Optimal Condition Numbers

G = GL(n) general linear group of invertible matrices

ω := {Ω+
1 , ..., Ω+

r , Ω−
1 , ..., Ω−

s } finite set of LA generators of gl(n)

Ω+
i : ”hyperbolic Jacobi rotations”

Ω−
i : ”standard Jacobi directions”

Given X ∈ G, define (κ denotes the condition number)

Tmin(X) = inf
{

∑

i

κ(et+
i

Ω+

i )|
∣

∣ X =
∏

finite

et±
i

Ω±

i

}

Problem:

This factorization task with minimal total condition number!

Does there exists factorization with better condition numbers than

for X?
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Lie Groups & Lie Algebras
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Intermezzo: Lie Groups and Lie Algebras

Example. General linear group of invertible n × n matrices

GL(n, R) := {X ∈ R
n×n| detX 6= 0}.

Definition. A matrix Lie group is any subgroup G ⊂ GL(n, R) that is also

a (locally closed) submanifold of Rn×n.
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Intermezzo: Lie Groups and Lie Algebras

Examples, cont’d:

(a) The real orthogonal group

O(n) := {X ∈ R
n×n| XX> = In}

(b) The special unitary group

SU(n) := {X ∈ C
n×n| XX∗ = In, detX = 1}

(c) The Euclidean group

E(n) :=

{[

R p

0 1

]∣

∣

∣

∣

∣

R ∈ O(n), p ∈ R
n

}

.

The first two examples are compact groups, while the third is not.
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Intermezzo: Lie Groups and Lie Algebras

Definition. A vector space V with a bilinear operation [ , ] : V × V → V

satisfying

(i) [x, y] = −[y, x]

(ii) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (Jacobi Identity)

is called a Lie Algebra.
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Intermezzo: Lie Groups and Lie Algebras

Lie algebras are the tangent spaces of Lie groups.

Theorem. Let G ⊂ GL(n, R) be a matrix Lie group. Then the

tangent space g := TIG at the identity matrix is a Lie algebra with

commutator as the Lie bracket:

[X, Y ] = XY − Y X.
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Intermezzo: Lie Groups and Lie Algebras

Examples

(a) The Lie algebra of O(n) is

o(n) := {Ω ∈ R
n×n| Ω> = −Ω}.

(b) The Lie algebra of SU(n) is

su(n) := {Ω ∈ C
n×n| Ω∗ = −Ω, trΩ = 0}

(c) The Lie algebra of E(n) is

e(n) :=

{[

Ω v

0 0

]∣

∣

∣

∣

∣

Ω> = −Ω, v ∈ R
n

}

.
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Control on Lie Groups
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Control on Lie Groups

G Lie Group with Lie Algebra g.

Bilinear control system on G

(Σ) Ẋ(t) =



Ad +
m

∑

j=1

uj(t)Aj



X(t), X(0) = I,

where Ad, A1, ..., Am ∈ g.

Reachable Set at time T > 0

R(T ) = {XF ∈ G| ∃u1, ..., um and s ≤ T : X(s) = XF }

Reachable Set

R = ∪TR(T )
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Control on Lie Groups

Definition

Accessibility: The reachable set R(T ) has an interior point

Local Controllability: The identity I ∈ R(T ) is an interior point

Controllability: For any XF ∈ G there exist controls

u1(·), ..., um(·) and T > 0 s.t. the solution of (Σ) satisfies

X(0) = I, X(T ) = XF .
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Control on Lie Groups

Problem 1 (Accessibility)

Definition (System Lie Algebra)

L := smallest Lie subalgebra of g, containing A1, ..., Am, Ad

Generators: ([A, B] = AB − BA)

Ad, A1, ..., Am, [Ad, Ai], [Ai, Aj ], [Ad, [Ai, Aj ]], ...

Theorem. (Σ) is accessible if and only if the system Lie algebra is

L = g.
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Control on Lie Groups

Theorem (Lian et al. 1994) Suppose

(i) For some constant controls u1, ..., um

(Σconst) Ẋ = (Ad +
∑

j

ujAj)X

is weakly positively Poisson stable.

(ii) The system Lie algebra L satisfies L = g.

Then the bilinear control system is controllable.

Accessability + Poisson Stability ⇒ Controllability
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Control on Lie Groups

Definition (Poisson Stability)

Flow of (Σconst): Φ : G × R → G; (z, t) 7→ Φ(z, t)

(Σconst) is Weakly Positively Poisson Stable if for all z ∈ G, any

neighborhood B(z) of z and all T > 0, there exists t > T such that

Φ(Uz, t) ∩ B(z) 6= ∅.

Examples: a swing (no damping), satellite attitude, ball rolling in a bowl.
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Control on Lie Groups

Theorem (Jurdjevic-Sussmann) Assume:

(i) There exist constant controls such that Ad +
∑

j ujAj lies in a

compact subalgebra k of g.

(ii) The system Lie algebra L satisfies L = g.

Then the system (Σ) is controllable.
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Control on Lie Groups

Corollary
Let G be a compact connected Lie group. Then (Σ) is controllable

if and only if

L = g.
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Time-Optimal Control on Lie Groups
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Time-Optimal Control on Lie Groups

General Notation:

Let G be a compact Lie Group with Lie algebra g; K ⊂ G a

compact connected Lie subgroup with LA k . Consider the bilinear

control system on G

(Σ) Ẋ =
(

Ad +

m
∑

j=1

ujAj

)

X, X(0) = I

with Ad ∈ g, A1, ..., Am ∈ k.

Assumption:

• Σ is controllable, i.e. g =LA generated by Ad, A1, ..., Am

• k = LA generated by A1, ..., Am
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Time-Optimal Control on Lie Groups

Given: Initial state X0 = I, Final state XF ∈ G

Problem 1.Find controls u1(·), ..., um(·) s.t. the corresponding

solution X(t) of (Σ) satisfies

X(0) = X0, X(T ) = XF for some T > 0

Problem 2.If problem 1 has at least one solution, then find a

time-optimal one, i.e. one with minimal T = Topt(XF ).

Problem 1 is always solvable, provided (Σ) is controllable!
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Time-Optimal Control on Lie Groups

Fast versus slow directions

Ad is called the drift term, A1, ..., Am the fast directions

Fact 1. If Ad = 0 and (Σ) controllable, then can control to XF in

arbitrarily small time: Topt(XF ) = 0, always!

Fact 2. The presence of drift term Ad 6= 0 is responsible for

Topt > 0.

Idea: Factor out fast directions!
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Time-Optimal Control on Lie Groups

Quotient System and Equivalence Principle

Consider the quotient space

G/K := {Kg | g ∈ G}

of left co-sets Kg, K = exp(k) Lie Group generated by fast

controls.

G/K is a smooth manifold
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Time-Optimal Control on Lie Groups

Example: (NMR)

For the NMR Schrödinger Equation on G = SU(2N)

Ẋ = −i



Hd +
2N
∑

j=1

ujHj



 X, X(0) = I

k := LA generated by iH1, ..., iH2N

K := exp(k) compact, connected Lie subgroup of SU(2N),

generated by exp(itHj), t ∈ R, j = 1, ..., 2N .

One verifies K = SU(2) ⊗ ... ⊗ SU(2)

• For N = 1 : K = SU(2) = G

• For N = 2 : K = SU(2) ⊗ SU(2) ' SO(4) ⊂ SU(4)

Edinburgh ’04, Helmke – p.25/51



Time-Optimal Control on Lie Groups

Quotient System and Equivalence Principle

The quotient system of

(Σ) Ẋ =
(

Ad +

m
∑

j=1

ujAj

)

X, X(0) = I, X(T ) = XF

is the control system on G/K

(Σ/K) Ṗ = AdU(t)(Ad)P, P (0) = K, P (T ) = KXF

Adg(Ad) = gAdg
−1, g ∈ K. The control functions for (Σ/K) are

arbitrary L1
loc functions t 7→ U(t) ∈ K.

Edinburgh ’04, Helmke – p.26/51



Time-Optimal Control on Lie Groups

Quotient System and Equivalence Principle

Theorem (Equivalence Principle).

(Σ) is controllable on G iff (Σ/K) is controllable on G/K.

Moreover, the optimal times on G and G/K coincide.

T G
opt(XF ) = T

G/K
opt (KXF )

Proof: PhD thesis by Khaneja

The optimal time T
G/K
opt has an interpretation within

Sub-Riemannian Geometry.
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Time-Optimal Control on Lie Groups

Sub-Riemannian Geometry

Let M be a Riemannian manifold, E ⊂ TM a constant dimensional

subbundle that satisfies the Hörmander Condition

For any p ∈ M , the LA of the sections of E evaluated in p

is equal to TpM (controllability cond.)

For any two points x, y ∈ M , the Sub-Riemannian distance is

d(x, y) := inf
{

∫ 1

0

||α̇(t)||dt | α(0) = x, α(1) = y, α̇(t) ∈ Eα(t)

}

.

Example: M = G/K, Ep := span{kAdk
−1 | k ∈ K}P , P ∈ M

satisfies the Hörmander Cond. (Equivalence principle)

NMR: M = SU(2N )/SU(2) ⊗ ... ⊗ SU(2) Sub-Riemannian space
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Time-Optimal Control on Lie Groups

Sub-Riemannian Geometry

Theorem.
T

G/K
opt (KXF ) = d(K, KXF )

Sub-Riemannian distance

Remark. The Sub-Riemannian distance d(x, y) is greater than or

equal the Riemannian distance on G/K:

d(x, y) ≥ geodesic distance between x, y

There is one case where these distances are equal: Riemannian

symmetric spaces.
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Time-Optimal Control on Lie Groups

Sub-Riemannian Geometry

Theorem. If G/K is a Riemannian Symmetric Space, then

Topt(XF ) = length of a geodesic in G/K that connects K with KXF

Main Advantage: Riemannian distances (i.e. lengths of geodesics)

are much easier to compute than Sub-Riemannian distances.
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Time-Optimal Control on Lie Groups

Theorem. The homogenous space G/K is a Riemannian symmetric

space, provided (g, k) is a Cartan-pair, i.e. g is semisimple and

g = k ⊕ p, p := k⊥

satisfies

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k
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Time-Optimal Control on Lie Groups

Riemannian Symmetric Spaces

SU(n)/SO(n) is a Riemannian Symmetric Space

SU(4)/SU(2) ⊗ SU(2) is a Riemannian Symmetric Space (good!

2-Spin Case)

SU(8)/SU(2) ⊗ SU(2) ⊗ SU(2) is NOT a Riemannian Symmetric

Space (bad!)
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Time-Optimal Factorization
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Time-optimal Factorization

Let G be a connected, compact Lie group with Lie algebra g.

Let K ⊂ G be a connected compact subgroup with Lie algebra k.

Let ∆ ∈ g be a drift term s.t. 〈∆, k〉L = g.

Consider the discrete control System:

(Σd) Xn+1 = Knetn∆LnXn, X0 = I Kn, Ln ∈ K, tn ≥ 0.

For X ∈ G let T d
opt(X) :=

inf
{

∞
∑

n=1

tn

∣

∣

∣
∃ (Kn, Ln, tn) :

∞
∏

n=1

Knetn∆Ln = X
}

.
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Time-optimal Factorization

Problem:

Is (Σd) controllable, i.e. does T d
opt(X) < ∞ hold for all X ∈ G?

Determine the “minimal” time T d
opt(X) for X ∈ G.
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Time-optimal Factorization

Generalized Version (multiple drifts)

G compact connected Lie group with LA g

ω := {Ω+
1 , ..., Ω+

r , Ω−
1 , ..., Ω−

s } finite set of LA generators of k

Ω+
i : ”slow, cost expensive” directions

Ω−
i : ”fast, cheap” directions

Given X ∈ G, define

Tmin(X) = inf
{

∑

i

|t+i |
∣

∣ X =
∏

finite

et±
i

Ω±

i

}

Edinburgh ’04, Helmke – p.36/51



Time-optimal Factorization

Problem

Is Tmin < ∞ always? Compute Tmin!

When does there exist a finite, time-optimal factorization?
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Time-optimal Factorization

Example 1 (Euler Angles)

SO(3), ω = {Ω+
1 , Ω−

1 },

Ω+
1 :=









0 0 −1

0 0 0

1 0 0









, Ω−
1 :=









0 −1 0

1 0 0

0 0 0









Euler Angles:

X = eθ1Ω
−

1 eθ2Ω
+

1 eθ3Ω
−

1 , θi ∈ [−π, π]

We will show: Euler Angles are time-optimal and

Tmin = |θ2| ∈ [0, π]
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Time-optimal Factorization

Example 2 (Euler Angles)

SO(3), ω = {Ω+
1 , Ω+

2 }, Ω+
2 := Ω−

1

Then Euler angles are i.g. NOT time-optimal:

Tmin < θ1 + θ2 + θ3 ! (Mittenhuber)
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Time-optimal Factorization

Equivalence Principle

Let G be a connected, compact Lie group with Lie algebra g.

Let k := 〈A1, ..., Am〉L, K := exp k.

Let ∆ ∈ g be a drift term such that 〈∆, k〉L = g.

Theorem.
(a) The discrete control system (Σd) on G is controllable and thus

T d
opt(X) < ∞

(b) For any X ∈ G the minimal times T d
opt(X) = Topt(X) coincide,

where Topt(X) is the minimal time for the control problem

Ẋ =
(

∆ +

m
∑

j=1

ujAj

)

X, X(0) = I, X(T ) = X
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Time-optimal Factorization

Problem: I.g. time optimal factorizations are infinite

Under what conditions on the drift term ∆ are they finite?

Definition [Haselgrove, Nielsen, Osborne]: A drift term ∆ is called

lazy , if there exists ε > 0 such that

Topt(e
t∆) < t for all t ∈ (0, ε). (∗∗)

If ∆ is not lazy, we call it fast.

Edinburgh ’04, Helmke – p.41/51



Time-optimal Factorization

Theorem. If ∆ is lazy, there are no finite, time optimal

factorizations for any element X ∈ G − K.
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Time-optimal Factorization

Conjecture 1: There exists a finite, time optimal factorization for

all X ∈ G iff ∆ is fast.

Conjecture 2: ∆ fast ⇐⇒ [∆, ∆⊥] = 0.

Remark: Conjecture 2 implies Conjecture 1.
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Computation of Optimal Time

Theorem (Khaneja). Let (g, k) be a Cartan pair. Let ∆⊥ be the

orthogonal projection of ∆ onto p and let a be a maximal abelian

subalgebra of p that contains ∆⊥. Then:

Each X ∈ G has a decomposition of the form

X = UΣV with U, V ∈ K and Σ ∈ exp a.

The minimal time is given by

Topt(X) = min
{

t ≥ 0
∣

∣

∣

(

t · conv W(∆⊥)
)

∩ exp−1(Σ) 6= ∅
}

,

where X = UΣV is an arbitrary factorization of the above type and

W(∆⊥) denotes the Weyl orbit of ∆⊥.
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Computation of Optimal Time

t

t

t
t

Convex hull of the Weyl Or-

bit of a ”symmetric” drift

term ∆

t

Convex hull of the Weyl Or-

bit of an arbitrary ∆.
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Computation of Optimal Time

Example 1, cont’d:

G := SO(3) and g := so(3),

Ω1 :=









0 0 −1

0 0 0

1 0 0









, Ω2 :=









0 −1 0

1 0 0

0 0 0









∆ := αΩ1 + βΩ2, k := 〈Ω2〉

Euler Angles: X = eθ1Ω2eθ2Ω1eθ3Ω2 , θi ∈ [−π, π]

Topt(X) = α−1|θ2|,

∆ fast ⇐⇒ β = 0.
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Computation of minimal time

Example: (NMR cont’d)

NMR-Schrödinger equation on SU(4)

Ẋ = −2πi
(

Hd +
4

∑

i=1

uiHi

)

, X(0) = I,

where Hd := σz ⊗ σz, H1 := I2 ⊗ σx, H2 := I2 ⊗ σy, H3 := σx ⊗ I2,

and H4 := σy ⊗ I2.

K = SU(2) ⊗ SU(2).

∆ = −2πiHd and a := i〈σx ⊗ σx, σy ⊗ σy, σz ⊗ σz〉.
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Computation of minimal time

Example: (NMR cont’d)

Theorem. For all X = UΣV ∈ SU(4) and U, V ∈ K, and Σ ∈ exp a fixed

it holds

T (X) = min
{ 3

∑

n=1
|tn|

∣

∣

∣
et12πi(σx⊗σx)et22πi(σy⊗σy)et32πi(σz⊗σz) = Σ

}

T (X) ≤ 3
2
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Computation of minimal time

Optimization Algorithm (NMR cont’d)

Let X(t, u) = U(u1, ..., u6)Σ(t1, t2, t3)V (u7, ..., u12),

U(u1, . . . , u6) = e−i2πu1H1e−i2πu2H2e−i2πu3H1e−i2πu4H3e−i2πu5H4e−i2πu6H3

V (u7, . . . , u12) = e−i2πu7H1e−i2πu8H2e−i2πu9H1e−i2πu10H3e−i2πu11H4e−i2πu12H3

Σ = et12πi(σx⊗σx)et22πi(σy⊗σy)et32πi(σz⊗σz)

To compute the minimal time T (X), we combine simulated annealing

with gradient methods to solve the nonlinear optimization problem:

min f(t, u) := |t1| + |t2| + |t3|,

subject to g(t, u) := 4 − Retr(X∗
F X(t, u)) = 0

where t = [t1, t2, t3], u = [u1, u2, ..., u12] ∈ [−1, 1]12
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Computation of Time-optimal Pulse Sequences

Consists of two sub-problems:

Given T ≥ 0, solve

min
t,u

g(t, u),

subject to f(t, u) ≤ T,

t ≥ 0.

Let V (T ) be the global optimal value of g(t, u), associated with a

given T ≥ 0.

Minimize T

subject to V (T ) = 0,

T ≥ 0.
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Computation of Time-optimal Pulse Sequences

Example

XF = e−
iπ
4













1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1













.

T (XF ) = 1.499996

t = [0.499993 | 0.500017 | 0.499986]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

T

V

V(T) 
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